THE NP = P CONJECTURE

A GENERAL INTRODUCTION

BY

CHARLES W. NEVILLE, OCTOBER 2000

(©Charles W. Neville, February 2002

Verbatim copying and redistribution of this document
is permitted in any medium provided this notice and
the copyright notice are preserved.

INTRODUCTION

The NP = P conjecture is one of the Clay Mathe-
matics Institute’s 7 Millennium Prize Problems. The
generally assumed falsity of the NP = P conjecture
provides the (somewhat shaky) theoretical foundation
for all internet cryptographic security. So this much is
known to be true:

THEORY = BIG_BUCKS

0. INTRODUCTION

In 1971, Cook proved a remarkable theorem: Among
the class of problems which can be solved quickly by
inspired guessing, there is a hardest problem — the
problem of determining that a given well formed propo-
sitional calculus formula has an assignment of truth
values making it true. The conjecture that this hardest
problem can also be solved quickly without guesswork
is known as the NP = P conjecture.

1. TIME COMPLEXITY CLASSES

Consider the problem of sorting a list of n elements.
The time needed to sort such a list depends on the
particular computer used, but with a given computer,
using the provably best algorithm possible, the time re-
quired is bounded above by a constant M times nlogn,

T < Mnlogn
Using O notation, we say
T = O(nlogn)

or that the sorting problem has time complexity O(nlogn
or that the sorting problem is solvable in nlogn time.




TIME COMPLEXITY CLASSES

Let’s look at the sorting problem more deeply.

A. It takes more time to fetch a 1 megabit record than
a 32 bit integer, so we need to take the size of the sorted
data items into consideration. Therefore, measure the
size of the list, not by the number of data items but

by the total number of bits needed to represent all the
items on the list. If n now represents the number of

bits needed, it still is true that

T = O(nlogn)

so the sorting problem still has time complexity O(nlogn).

TIME COMPLEXITY CLASSES

For the sorting problem, even with a Turing machine,

T = O(nlogn)

(use mergesort with 3 or more tapes) but for other
problems with RAM machine time complexity O(nlogn),
there is a quadratic slowdown, and the time complex-

ity changes to O((nlogn)?). The reason is that we can
no longer directly access data on the tapes, but instead
must read through the tapes to reach a desired data
item.

TIME COMPLEXITY CLASSES

B. But suppose n is so large that we can’t store the
whole list in memory, but must use tape. Then we ac-
tually have changed our model of computation from

A VON NEUMANN RAM MACHINE
to
A TURING MACHINE

TIME COMPLEXITY CLASSES

So

TIME COMPLEXITY DEPENDS ON THE MODEL
OF COMPUTATION

but fortunately only by an exponent of order < 2. And
in general we have

Theorem. A problem with RAM machine time com-

plexity O(f(n) has Turing machine time complexity
O(f(n)?) or better.




TIME COMPLEXITY CLASSES

C. Time Complexity Class P and Polynomial Time

Alan Cobham introduced time complexity class P in
1964 to provide a robust, model independent time com-
plexity class.

Def. A problem lies in time complexity class P if
a. It has a yes/no answer.

b. The answer can be determined by a program run-
ning in time O(nP) for some exponent p, where n is the
number of bits needed to specify the input data for the
problem.

If a problem lies in time complexity class P, we say it
runs, or is solvable, in polynomial time.

TIME COMPLEXITY CLASSES

W =X, >AI_>X<M<NMV>NM >AI_;X<H <va

NSNS
SRR IR R R
HNENTN TN
SECRE R RS R

TIME COMPLEXITY CLASSES

D. Time Complexity Class NP and Non-Deterministic
Polynomial Time

Consider a well formed formula (a wff) in the proposi-
tional calculus, for example

W =X, A(=X2V X3) AXo A (X1 V X3)

We might write down its truth table to show it is sat-
isfiable (has an assignment of truth values making it
evaluate to TRUE),

TIME COMPLEXITY CLASSES

This takes

23 = 8 steps x the time necessary to evaluate the
formula once.

Or, we might make an inspired guess — assign each of
X1, Xo, X3 the value TRUE. It takes much less time,

1 step x the time necessary to evaluate the formula
once,

to check that the guessed truth assignment makes the
formula evaluate to TRUE.




TIME COMPLEXITY CLASSES

The first algorithm, evaluate the truth table, is deter-
ministic and can be implemented on a RAM computer
(or Turing machine). It runs in 7' = O(2") time (expo-
nential time), where n is the number of bits needed to
specify the formula.

TIME COMPLEXITY CLASSES

In 1971, Cook introduced time complexity class N P.
Def. A problem lies in time complexity class NP if

a. It has a yes/no answer

b. With an inspired guess, the correctness of the yes
answer can be checked (verified) by a program running
in polynomial time.
The N in NP stands for non-deterministic. The P
stands for polynomial. If a problem lies in time com-
plexity class NP, we say it runs, or is solvable, in non-
deterministic polynomial time.

TIME COMPLEXITY CLASSES

The second algorithm is non-deterministic, it requires
inspired guesswork.

We could implement it on a computer — have the com-
puter generate a pseudo-random assignment of truth
values and then check the resulting truth value of the
formula, but we would have to be very lucky to get

an answer of TRUE. An answer of FALSE would tell
us next to nothing, so it would seem that the non-
deterministic algorithm is not very useful. However it
does have the merit that it runs quite fast, in polyno-
mial time — in fact in linear time, ie. in time T = O(n)
— with the right guess. We shall see later that non-
deterministic algorithms can be quite useful.

TIME COMPLEXITY CLASSES

E. Other Problems in Class N P.

The Boolean satisfiability problem, the one we just dis-
cussed, lies in class N P. Here are some other problems
in the class.

i. Integer Programming. Given a system of linear in-
equalities in many variables with integer coefficients,
does the system have a solution with integer values for
the variables.

ii. Quadratic Programming. Given a system of quadratic
inequalities in many variables with integer coefficients,
does the system have a solution with rational values for
the variables.




TIME COMPLEXITY CLASSES

iii. Given k cities and a k& x k matrix of intercity dis-
tances, is there a traveling salesman tour with total
distance less than a given constant M.

iv. And even, given a parabola dy = az? + bz + c
with integer coefficients, does it pass through an inte-
ger point (a point with integer x and y coordinates)
with x coordinate in the interval 0 < z < M. Here M
is a pre-assigned positive constant.

TIME COMPLEXITY CLASSES

To see why factorization is hard, consider the following
200 digit integer,
740688775158586756925179514305923619344747707748672
819740657949691729762288900220375880252441280568103
664278331468595649569390171433605684377695257131673
900054953125746900622800624571610888100289505957

I’ll bet you didn’t know that its prime factorization is

150940249729344526099836599627704745113949343586738
38804258766915495884704113536038134442386798911221
X
490716542795402777810805959749878926941176558019949
04744272398370915479278320344512623315863583551217

TIME COMPLEXITY CLASSES

All of these problems are equally hard, in fact exactly
as hard as the Boolean satisfiability problem, because
each can be reduced to the others.

Here is a problem in class NP which is believed to be

very hard, but not as hard as the ones just mentioned.

iv. Factorization.

Given an integer m, does it have a factor less than a
given constant k.

TIME COMPLEXITY CLASSES

But now that you know what I claim to be the factor-
ization, you can easily check my assertion by multipli-
cation. (At least the check is easy in computer terms.)
Thus factorization is both hard and in NP.




TIME COMPLEXITY CLASSES

The factorization problem forms the basis for the RSA
public key encryption algorithm used every time you
buy something over the internet. So we have another
experimentally verifiable fact,

NUMBER_THEORY = BIG_BUCKS

(but, alas, not to number theorists).

Coo0K’Ss THEOREM AND THE NP = P CONJECTURE

Most experts believe the NP = P conjecture is false,
but think what a proof that it is true would mean.

i. All the coding schemes used on the internet would
be rendered useless, because factorization would be
solvable in polynomial time*.

ii. Circuit routing on integrated circuit chips would be
much easier and better because circuit routing is an
NP problem, and one of great practical importance.

* Well, maybe not, because an n°7 time algorithm
would be as bad as our known exponential time algo-
rithms in a practical sense. But for theory, class P is
taken to be the class of tractable problems, and the
complement of class P is taken to be the class of in-
tractable problems.

2. COOK’s THEOREM AND THE NP = P CONJEC-
TURE

In 1971, Cook proved the following remarkable theo-
rem:

Theorem. There is a hardest problem in class NP,
namely Boolean satisfiability. In other words, if there
were a (deterministic) polynomial time algorithm for
solving Boolean satisfiability, then every other problem
in class N P would also be solvable in polynomial time.
We can rephrase this as,

Theorem. If Boolean satisfiability lies in class P, then
so does every other NP problem,

or even as,

Theorem. If Boolean satisfiability lies in class P, then
NP =P.

Coo0K’Ss THEOREM AND THE NP = P CONJECTURE

iii. Military force mix calculations would be much eas-
ier and better because they are integer programming
problems — it is hard to use half an aircraft carrier.

iv. As a result, pork barrel politics would be elimi-
nated — well probably not, but it’s a nice thought.

v. Whoever proved NP = P would be famous, and
might, like Wiles, be given a silver medal by the Inter-
national Mathematical Union — but only if over the age
of 40.




3. REFERENCES

Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ull-
man. The design and analysis of computer algorithms,
Addison Wesley, Reading Mass., 1974.

Alan Cobham. The intrinsic computational difficulty

for functions. In Y. Bar-Hillel, editor, Proceedings of

the 1964 International Congress on Logic, Methodology
and Philosophy of Science, pages 24 — 30, Elsevier /North-
Holland, 1964.

Stephen A. Cook. The complexity of theorem-proving
procedures. In Conference Record of Third Annual
ACM Symposium on Theory of Computing, pages 151
— 158, Shaker Heights, Ohio, 3 — 5 1971 1971.

REFERENCES

Stephen A. Cook. The P versus NP Problem. Clay
Mathematics Institute Millennium Prize Problems,
http://www.claymath.org/prize_problems/p_vs np.pdf,
accessed 10/10/2000.

Michael R. Garey and David S. Johnson. Computers
and intractability, a guide to NP-completeness. W. H.
Freeman and Co., San Francisco, 1979.

Richard M. Karp. Reducibility among combinatorial
problems. In R. E. Miller, and J. W. Thatcher, editors,
Complexity of Computer Computations, pages 85 —
103, Plenum Press, New York, 1972.

Dominic Welsh. Codes and cryptography, Oxford Uni-
versity Press, Oxford, 1988.




