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1. The Halting Problem TwistedPprogram t

The twisted program t in our proof of the undecideability of the Halting Problem is actually
quite simple,

program t;
procedure s ( string p );

begin {* s *}
the body of s goes here

end; {* s *}
begin {* main *}

on input p,
if s outputs ”runs forever” then stop
else while true do; {* infinite loop *}

end. {* main *}
Here we have chosen a Pascal like programming language. Recall from the talk that we posited

the existence of the super program s which, on input of the text of a given program p, successfully
predicts whether p, on itself as input, halts or runs forever, and recall that t is supposed to behave
in exactly the opposite manner from the predictions of s. It is clear that t behaves as advertised.

Before going further, it might be a good idea to give a real world example of a program which
takes the text of other programs as input:

A Pascal compiler. Such a program takes the text of Pascal programs as input and produces
machine language translations. A Pascal compiler could easily have its own text as input. It
would then produce a machine language translation of itself.

2. The Exponential Diagonalization Twisted Program t

The twisted program t in our proof that there are programs which run in exponential time but
not in polynomial time is somewhat like the Halting Problem twisted program above. The main
differences are,

a. In place of s, t has a built in Pascal interpreter which it calls on input of a program p to run
p.

b. The interpreter has a built in counter, and the interpreter uses this counter to halt after en

steps, where n is the number of bits in the text of p, in case the program p has not already
halted.
Point (a) allows our twisted program t to run Pascal programs. Point (b) insures that t runs

in exponential time. Recall that both of these are necessary in the diagonalization proof that there
are programs which run in exponential time, but not in polynomial time.



There is an apparent snag in this. Although en is eventually larger than Mnq for any constant
M and any exponent q, n may have to be quite large before this happens. However, this snag is
only apparent, because the text of legal programs p in P may begin with any number of leading
blanks, without changing the way the program runs. Thus if the number of bits n1 in the the
text of program p1 in P is too small for p1 to finish in time en1 , simply note that there will be an
equivalent program p2, consisting of the text of program p1 padded with enough leading blanks so
n2 will be so large that p2 will be able to finish in time en2 . Here n2 is the number of bits in the
text of p2.

You should check that the diagonalization argument still goes through because t still disagrees
with the yes/no output of every program p in P on the text of an equivalent program as input.

3. Turing Machine vs RAM Machine Time Complexity

The theorem in the first talk on the quadratic time slowdown for Turing machines vs RAM
machines needs more explanation. First, if a RAM machine is allowed to fetch arbitrarily long
words at once, then a quadratic slowdown no longer holds, so we need to assume a RAM machine
can only fetch or store a fixed number of bits, say 128, at once. (However, it should still deal
with arbitrarily long addresses in one operation.) Second, the quadratic slowdown theorem holds
true for multi-tape Turing machines. For single tape Turing machines, there is a cubic slowdown
(because of integer multiplication and division). Refer to the book of Aho, Hopcroft and Ullman,
or the book of Hopcroft and Ullman, both listed in the talk references, for more information.

4. Computable Sequences

In the talk, we asserted without proof that most sequences of 0’s and 1’s are not computable.
The proof is quite simple. An (infinite) sequence of 0’s and 1’s is computable by a program p if p,
on input n, outputs the nth term of the sequence. A sequence is computable if it is computable by
some program. Thus the sequence of binary digits of π is computable. On the other hand, there
are uncountably many uncomputable sequences, and thus most sequences are not computable.

Here is the simple proof. The Cantor second diagonal argument shows there are uncountably
many (infinite) sequences of 0’s and 1’s. But there are only countably many programs because the
text of each program is a finite sequence of ASCII characters, and there are only countably many
such finite sequences. Since each computable sequence must be computable by a program, and each
program computes at most one sequence, there are only countably many computable sequences.
Thus the set of uncountable sequences is the complement of a countable set in an uncountable set,
and so is uncountable.


